| Question
number | Ans | Mark | |--------------------|-----|------| | 1(a)(i) | D | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 1(a)(ii) | 16.0 (m/s) read from graph (1) Substitution (1) (distance travelled =) 16 × 0.5 Answer (1) 8.0 (m) (1) | award full marks for correct numerical answer without working ecf for substitution and | | | | | answer using wrong speed value | (3) | | Question
number | Answer | Mark | |--------------------|--------|------| | 1(a)(iii) | A | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | 1(a)(iv) | Obtain readings from graph (1) Substitution (1) $\frac{16}{2.0}$ Answer (1) 8.0 (m/s ²) | award full marks for correct numerical answer without working | (3) | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | 1(b) | Any three improvements from: suitable instrument to measure distance (1) using a greater distance (to reduce effect of reaction times) (1) suitable instrument to measure time (1) use of one student at the {first/second} lamp post to signal when to {start/stop} timing (1) | allow tape measure,
trundle wheel
allow stop watch/clock
or timing app. on phone | (3) | | • | two of three sets of students | | |---|-------------------------------|--| | | taking readings for the same | | | | car (1) | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | 2(a) | rearrangement (1) $m = \frac{f}{a}$ substitution and conversion (1) $m = \frac{1870}{1.83}$ answer and rounding to 3 s.f. (1) 1020 (kg) | maximum 2 marks if kN not converted to N award full marks for correct numerical answer without working | (3) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | 2(b) | rearrangement of $\frac{(v-u)}{t} = a$ (1) $v = u + at$ | | | | | substitution (1)
$v = 0 + 1.83 \times 16$ | | | | | answer (1)
29.3 (m/s) | award full marks for correct numerical answer without working | (3) | | Question number | Indicative content | | | | |-----------------|---|-----|--|--| | *9(c) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. | | | | | | The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | | | AO2 | | | | | | fuel forms a store of chemical (potential) energy chemical energy is transferred to kinetic energy and thermal energy when the car moves kinetic energy transferred to thermal energy as the car slows down | | | | | | AO3 | | | | | | during X, kinetic energy increases as the car's speed
increases/car accelerates and the increase in kinetic energy
is provided by the chemical energy store | | | | | | during all three sections, work is done against frictional
forces in the moving parts of the car and against the drag
from the air | | | | | | during Y, kinetic energy stays constant when the car moves
at constant speed but energy is still transferred to thermal
energy | | | | | | during Z, kinetic energy decreases as the car slows down | (6) | | | | Level | Mark | Descriptor | |-------|------|--| | | 0 | No awardable content. | | 1 | 1–2 | Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) The description attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) | | 2 | 3–4 | Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) The description is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) | | 3 | 5–6 | Interpretation and evaluation of the information,
demonstrating throughout the skills of synthesising relevant
understanding. (AO3) | |---|-----|--| | | | The description is supported throughout by linkage and
application of knowledge and understanding of scientific ideas,
logical connections made between elements in the context of
the question. (AO2) |